
Problem Solving to Teach Advanced Algorithms in
Heterogeneous Groups

Florent Bouchez-Tichadou
Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG

Grenoble, France
florent.bouchez-tichadou@imag.fr

ABSTRACT
It is notoriously difficult to teach heterogeneous groups. In this
article I describe my experience in teaching high-level algorithms to
a class of international master students coming from very different
backgrounds, how the course evolved in a period spanning five
years from a very classical course to a course that focuses highly
on solving algorithmic problems in groups, and how that helped
in better choosing the themes covered in the course, structuring
it using a more definite direction, and better engaging almost all
students by making them work on problems they can relate to.

This article presents the various axes I chose to follow as well as
what was discarded from the initial course. It shows that students
are more engaged in learning and more motivated to work, as there
is the possibility for everyone to contribute and students can help
one another; The course has then become a favorite amongst the
other courses of the curriculum. Moreover, the teachers themselves
are also more engaged, feel closer to the students, but are also under
more pressure as the position changes dramatically from that of a
lecturer. This article shows that it takes a lot of time to stabilize to
satisfaction and presents recommendations for teachers interested
in modifying their courses.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Computational thinking; Adult education;

KEYWORDS
Problem-Based Learning, Algorithms, Master level, Heterogeneous.
ACM Reference Format:
Florent Bouchez-Tichadou. 2018. Problem Solving to Teach Advanced Algo-
rithms in Heterogeneous Groups. In Proceedings of 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE’18).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3197091.3197147

1 INTRODUCTION
When I started working at the university I got in charge of a master
level course on advanced algorithms in an international master

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5707-4/18/07. . . $15.00
https://doi.org/10.1145/3197091.3197147

program. Students come from many different places around the
world: mainly Europe, but also Asia, Middle East, and some from
Africa or America. The main group, about 30%, come from our own
country: France. Although there is a selection, it is very hard to
judge precisely the capabilities and knowledge of all those people
based on their applications. They are expected to have the equiva-
lent of the European L3 degree in computer science, but what they
have actually studied before is highly variable. As a consequence,
the population in this master program is very heterogeneous.

The first year, I followed the same outline as my predecessor,
introducing all topics as best as I could in a mixture of lectures
and exercises: complexity analysis, amortized complexity, advanced
data structures such as auto-balancing trees, dynamic programming,
NP-completeness, approximation algorithms, and graph coloring.
The students’ competences in algorithms were very varied, so I
tried my best to explain the basic knowledge while also trying to
keep the interest of students who performed better. By the end of
the semester, the morale was pretty low, for me, and seemed not
much better for the majority of students: actually, I could not really
tell for sure, as my feeling was that I did not really know them.

Here started my journey: I had to change something, for the
way I was teaching felt wrong to me. I discovered Problem-Based
Learning (PBL) [2, 5, 6], which seemed to promise to solve all the
problem I had: students would work more during sessions, those
with weaknesses in algorithms would catch up during those times,
students would be more interested and invested when confronted
to real-life problems. Problem-based learning is used in a variety of
context and curricula, and in computer science, one can find many
instances where it is used for first year students just starting to learn
programming [2, 3, 5]. Although the principle applied is similar,
there are some specificities when using it for teaching algorithms
at the master level that I will present in Section 2.

The content of the course was very dense, and making students
think more by themselves takes more time than just giving them
new knowledge. Section 3 presents the choices that were made in
terms of scientific content, but also how this reduction necessity
forced me to better frame the essential and to better organize the
course around what I view as the most important notions: the
optimal and complexity properties of algorithms. The students’
feedback for this course was recorded every year with a thorough
survey. Analysis of these surveys is presented in section 4.

Finally, I will give on overview on the perceived effect of PBL
on students, but also a return of experience from the tutor’s point
of view, as this is the role that teachers endorse for this course.
Section 5 presents the changes I experienced and in my relations
with my students, as well as the effects on the other teachers who
participated in this journey.

https://doi.org/10.1145/3197091.3197147
https://doi.org/10.1145/3197091.3197147

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Florent Bouchez-Tichadou

2 THE SET-UP
The course spans over 22 sessions of 1.5h. Problems require an
average of 5-6 sessions since they are used to introduce difficult
concepts, meaning there is enough space for four problems.

2.1 General Framing for a Problem
A problem spans about 5-6 sessions. The first session is devoted to
the discovery of the problem, and a document of about 6 to 8 pages
is distributed to all students. Its structure is as follows:

• The global learning objectives: to give students a general idea of
what they will learn when trying to solve this problem. For in-
stance: “using dynamic programming to find the optimal solution
of a problem in polynomial time”;

• The general session organization: the approximate milestones
that we expect them to achieve at each session, and the work we
expect from them between sessions;

• The problem itself: it introduces a “real-life problem” exposed in
the everyday language, to that any modeling has to be done by
the students themselves. See Appendix A for an full example of a
problem used to introduce the concept of dynamic programming;

• A list of resources where students can search for the scientific
knowledge they are currently lacking to solve the problem. These
include “lecture notes,” reference to chapters in books, or websites
covering the topic;

• A more detailed planning of the sessions, especially for the first
problems, to guide students in the steps to follow to try and solve
the problem. By the end of the semester, this is not required as
all groups know how to organize themselves;

• A “Your Learning” part listing precise learning objectives where
students can reviewwhether they have missed something in their
learning. Items are for instance “writing a greedy algorithm to
solve a problem” or “proving that a greedy algorithm is not opti-
mal”. After each problem, all students are individually evaluated
on those items in a 30-40 minutes “quick test”;

• Finally, a meta-analysis section where, after each problem, stu-
dents are invited to reflect on their work (as a group and individ-
ually) during this problem. In particular it is important for them
to reflect on what worked, what did not, and what they would
like to change to improve for the next problem.

During the first session of a problem, each student is encouraged
to first read the document and start thinking alone on the problem.
This stage is particularly important as we want first to make stu-
dents think by themselves and not rely purely on the group. When
everyone has had enough time to start having their own ideas, they
are then encouraged to share their comprehension of the problem.
This part opens discussions and preconceptions are put to the test.
After a few sessions, there is a natural equilibrium in every group,
where some time is devoted to personal work and some other to
sharing and discussion.

Before the end of the first session, each group must decide what
needs to be done individually to prepare the next session. At the
beginning, we suggest the work (reading, devising an algorithm. . .),
but as the semester progresses they are autonomous. So between
each session, the same personal work is expected from all students,
so that the next session starts with the sharing and confrontation

of personal ideas. Whenever a group feels they have attained a
milestone, they are free to continue working on the next one.

Finally, students are required to hand out a group report on the
problem at the end of the last session. This plays a very important
role, as students usually have a very good idea on how to solve the
problem and which algorithms to use, but they have poor commu-
nication skills with regard to actually explaining to someone else
how to do it. They are expected to write algorithms in pseudo-code
as well as all that would be required for a person to understand
how to solve the problem. We want them to use pseudo-code as a
means to communicate between human beings (contrary to actual
code, which are instructions to a machine).1

2.2 Particular Sessions
The very first session of the semester. It is used to introduce the

PBL method. Groups of students of 5-6 people are formed (see
Section 2.5 for details) and are asked to solve a very small problem
under time constraints. We use a projector to run a binary counter
counting down to 0 that changes only one bit at a time. Teams
of students compete to guess the time at which it will stop. The
situation is fun and engaging and serves both as an ice-breaker
(many students here are just arriving from their home country),
and to show it is more efficient to work in a group than individually.
This also allows us to cover a small topic that did not fit anymore
in our problem organization: amortized complexity.

Restructuring lectures. Twice in the semester, for the problems
introducing dynamic programming and approximation algorithms,
we have a restructuring lecture. It is always the fourth session of
a 6-session problem, which means that students will have already
thought about the problem for three sessions, ruling out simple
algorithms and starting to apply concepts found in the lecture
notes. This is a particularly ripe time to give a “lecture” on the topic
at hand, in the form of a Q&A session. Students are encouraged
to ask questions in advance so they have to work out what are
the obstacles that block their understanding. They are then very
receptive and hungry for answers during that session.

2.3 The Tutor’s Role
In PBL, the teacher becomes a tutor, trying to avoid as much as
possible the role of the “one who knows.” Initially, the students will
want to check with the tutor if what they are doing is correct. What
we want is to habituate them to be more autonomous, as in their
future life they will not magically have someone to check whether
they are doing right or wrong. Our role here is to ensure that
learning takes place. As such, we keep track of the advancement
of each group by discussing with them regularly (at least once
but often more per session), questioning them to verify that all
members really understand what is being discussed. We also have
the role of “safety check,” meaning that if we realize a group is really
on the wrong track and will waste too much time we try to steer
them in the right direction, often through the use of questions. A
major difficulty is refraining ourselves from going back to a teacher

1Although actually programming the algorithms is encouraged, we do not enforce
it as students already do a solid amount of programming in the other courses of the
master program.

Problem Solving to Teach Advanced Algorithms in Heterogeneous Groups ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

position that would provide knowledge and answers to ensure all
groups solve the problem.

2.4 Evaluation
This course targets individual learning through the use of group
work. This means the emphasis in the grade will be on individual
evaluation, but we do not want people to disengage from the group
work so a small portion of the grade is based on the quality of the
group production.2 Each problem is followed by a “quick” personal
test of 30 to 40 minutes to encourage students to work continuously
during the semester, and to check regularly their comprehension
of the topics covered by the problems. 70% of the overall grade is
based on a 3h final examination at the end of the semester; 20% on
the 3 best quick tests (over 4), and 10% on the group reports.

2.5 Forming the Groups
We let them choose their groups of 5-6 people however they want,
with the constraint that no more than two people speaks the same
language, to encourage mixing up the origins. I initially also wanted
that no female is left alone in a group, but dropped this constraint
as this was never a problem at this level of study (female students
seem accustomed to working with and handling male students, and
the distribution of role, parole, and work was fair).3 The number of
students per group is chosen so that group work is possible (> 3
people) but groups are still manageable (< 7 people).

3 CONTENT
The content of the course prior to the use of PBL was dense, fea-
turing complexity analysis, amortized complexity, auto-balancing
trees, dynamic programming, NP-completeness, approximation al-
gorithms, and graph coloring. During my first year of teaching, I
had the impression of rushing through every topic. Looking back
at that time, it feels like I was force-feeding a solid percentage of
the students.

I realized that it was impossible to keep everything while switch-
ing to PBL. I also realized that some topics were just too difficult
for students: either we would systematically avoid them in the final
exam, or students would fail those questions, including those con-
sidered the “best” students. This forced me into rethinking what is
important for students to understand at this level of study.

3.1 The Algorithmic Thinking at Master’s Level
After four years of adjusting the course in PBL fashion, I have
extracted what is now my guide when teaching algorithms at this
level. The most important aspect is that students need to be able to
reason on the following two characteristics: • the optimality of an
algorithm; • and the complexity of an algorithm.

When students enter this course, they have some preconceptions
on these notions, which highly differ from the scientific definitions.
They will nearly always mistake one for the other, the most com-
mon misconception being that an algorithm is not “optimal” when
2Again, this grade is not so important that student start to rely on the group to pass
the course instead of on their individual learning.
3Note that the literature usually recommend against letting students choose their own
group, which is also what I advise for L1-L2 students, as there is a strong tendency to
form “bad” groups where unmotivated students all end up, but I found that at the M1
level it does not pose any problem, as students are more invested in their learning.

we can devise a faster one for the same problem. . .This last point
shouldn’t be surprising, as for nearly all their studies, every algo-
rithm encountered was optimal, and every problem had an optimal
algorithm that solves it. I then organized the problems with these
two notions as a thread of continuity, with the goal of making stu-
dents think, analyse, devise, and write algorithms that vary a lot in
complexity and optimality.

3.2 The Four Problems
The four problemswe use try to induce the following logical steps: 1)
A problem is presented along with a first algorithm, say Algorithm
N, that “solves” it (a naïve or greedy algorithm). 2) Students realize
that Algorithm N is actually not optimal and search for a better
one: Algorithm B which may or may not be optimal. 3) These steps
are repeated until they found optimal Algorithm E. 4) Students
realize Algorithm E has exponential complexity and is not useable in
practice. With the help of the lecture notes, students proceed to find
polynomial Algorithm X, which either uses dynamic programming
or is an α-approximation.

One important point here is the repetition throughout all the
problems of the same steps. Students are so used to being guided
step by step with a much finer grain that they are at loss when
encountering a bigger, open problem. The steps presented above are
a “meta-algorithm” that can be followed when solving algorithmic
problems by asking the right questions: “is my algorithm optimal?”,
“can I find counter examples?”, “is my algorithm exponential?”, “is
it an approximation?”, . . .

I will now briefly present the four problems, explaining how they
fit the above goal of giving student a profound understanding of the
optimality and complexity of the algorithms, while also covering
interesting algorithmic topics.

Problem 1: Maze generation. Actually a “warm-up” problem that
introduces PBL, hence follows only loosely the above method. Stu-
dents are given an informal algorithm that recursively generates
a maze, and are asked first to translate the algorithm into precise
pseudo-code, then propose solutions to escape the maze.

The beginning of the semester can be challenging for interna-
tional students. They need some time to acclimate, and sometimes
lack basic algorithmic knowledge. So this short problem only uses
what every student is supposed to know at this level, but is still
challenging enough so that all students can exercise their algo-
rithms skills: while building the maze is easy, there are multiple
ways to compute paths to the exit, with varying efficiency. Students
lacking the “algorithmic” way of thinking benefit from seeing how
the others tackle the problem.

Problem 2: Card Game. Students play a very simple game of cards
where players pick cards turn by turn from the ends of a row of
cards. The opponent plays a greedy strategy that seems to work
well, and the goal is to beat him·her.

This is really a problem I love and a short description is provided
in Appendix A. The problem itself is very simple to understand, and
students always end up bringing actual cards to the sessions to try
out strategies and produce counter examples. They are confronted
to their first non optimal greedy algorithm, and already struggle to
prove the non-optimality as they have first to define what it means.

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Florent Bouchez-Tichadou

Figure 1: Evolution of the rating of the course by students

They soon find an exponential algorithm that tries every possibility.
The key is to let students find by themselves (by reading lectures
notes) that many sub-problems are recomputed and they can use
dynamic programming to go back to polynomial complexity.

Problem 3: Traveling Salesman Problem. We disguise the TSP as
a problem of drilling holes in a printed circuit board. Students are
presented a very stupid algorithm which is not an approximation.
Although there is no actual course on NP-completeness, students
are introduced to the idea that some problems cannot be solved
in polynomial time with our current knowledge. We then guide
them into finding a 2-approximation using spanning trees. This is
a drawback of PBL in this context: approximation algorithms is a
very difficult topic and it is hard to find a problem that students
can fully solve by themselves.

Problem 4: Morse Code. Students are asked to decipher a message
in Morse code that was recorded without spaces. This last problem
is shorter and meant to reconcile all that was learned during the
semester: it includes fancy data structures (prefix trees), and the
need to decide whether the problem is solvable using dynamic
programming or needs to be approximated.

4 STUDENT’S FEEDBACK
When I initiated the switch to PBL in 2014, I received the help of a
pedagogical councilor at the university, who had a lot of experience.
He also proposed to conduct a first survey to get the feedback of
students, which would help to improve the course. We kept using
the same survey each following year, so we could track what was
improving or not over the years. It should be noted that the feedback
was asked prior to students passing the final exam and receiving
the most important grade of the course. Sadly, I do not have data
prior to switching to PBL.

4.1 The Survey
The survey is anonymous, and consists of 38 closed-ended ques-
tions and 11 open-ended questions. All close-ended questions are
strongly worded, such as “The content is rich and interesting,” and
we propose four possible choices (“completely agree,” “rather agree,”
“rather disagree” and “completely disagree”) to encourage students
to take position (not answering was considered “neutral”). Only
one question, that asked student to globally rate the course, had six
possible answers ranging from “excellent” (6) to “bad” (1). Results
for this particular question are presented in Figure 1.

Questions are organized in categories. 6 questions on the global
appreciation of the course: general content, session organization,
material provided, and whether the choice of using PBL was well

Figure 2: Rating from students averaged by category

suited, allowed them to learn, and made them more responsible
for their own learning. 7 questions on the group work: affinity
toward working in group, group size, atmosphere, internal orga-
nization, workload repartition, quality of the group production,
engagement of other members. 4 questions on the tutoring: un-
derstanding of the role of the tutor, listening/disponibility of tutor,
technical skills, quality of supervision. 3 questions on the evalu-
ation methods: group evaluation, quick tests, and indications for
the final exam. 3 open-ended questions asking students to express
in a few words the strengths of the course, its weaknesses, and if
they had any suggestions to improve it. The rest of the questions
concerned the individual problems (subject, difficulty, total time
spend working on them, strengths and weaknesses). Results for
these questions are presented averaged by category in Figure 2.

We managed each year to have the feedback of approximately
75% of students, i.e., from 28 to 38 people as the cohort increased
slightly in size each year.

4.2 Interpretation of Results
Figure 1 shows the evolution of the global rating of the course by
the students. The first year was a bit disappointing, as we spent
a enormous amount of time trying to make this course a better
one and converting everything to PBL. Still, about 70% of students
had a rather positive view on the course, which was encouraging.
The rating improved with the years, with a happy surprise this
past year, with only two students rating the course as “insufficient,”
while nearly half of them thought it was “excellent.”

Interestingly, the content of the course was very stable from
2015 to 2017, which is surprising when looking at Figure 1, which
shows no improvement in 2016 but a large one in 2017. Considering
Figure 2, which presents the results of the close-ended questions
averaged by category for each year. We observe globally an increase
in the rating (“completely disagree” is encoded as 1, while “com-
pletely agree” is coded by 4). However, it is even more clear that
there is a 2016 “drop.” Part of it can be explained by the unavoidable
variability in students from year to year, but it is also probable that
tutoring plays a role here.

The 2016 “drop”. During all the study, I was tutoring half of the
class, but in 2014, 2015, and 2016, there were three different tutors
for the second half that I will call tutor A, tutor B and tutor C. While
tutors A and B received training in PBL, tutor C specifically did
not want to participate in such a training and hence received only

Problem Solving to Teach Advanced Algorithms in Heterogeneous Groups ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus

minimal training from my part. In 2017, tutor C was again present
for the second group, but this time had one year of experience plus
half a day of meeting / debriefing on PBL in a medium group of 8-9
teachers. Since 2015, the content of the course was quite stable, so it
is probable (as it could be expected) that the training of the teachers
has an impact on the appreciation of the course by students.

Effects on group work. When looking at the detailed data (not
present here due to size constraints), there is a correlation between
the student’s comprehensions of: the PBL method, the tutor’s role
(listening, supervision, guiding skills), and the group’s internal
organization and work repartition. All those were rated a bit low
in 2016 and increased in 2017. This is again an indication that the
tutor’s presence and work has an effect on the group work, which
in turns affects the students’ global appreciation of the PBL method,
and the course itself (even the content of the course was better
appreciated in 2017). It should be noted that, even if the general
rating for the “Tutor” category is quite high, students lack the ability
to fully understand what is to be expected from a tutor, so it is best
to factor these results with those of the “Group” category, where
one can see the effects of “good” or “bad” tutoring.

General comments. Overall, problems are really appreciated by
students, which is also reflected in the open-ended questions, where
many comments stated it was very interesting to be confronted
with “real-life” challenges that were engaging. Note that in 2015
we converted problem 0 to a single introductory session, and added
problem 4 (which was not present in 2014).

The twoworst-rated categories are “Group” and “Evaluation.” For
the evaluation, it shows that students do not feel prepared enough
for the quick tests or the final exam. Indeed, compared to the other
“classical” courses they have, and probably compared to the vast
majority of other courses they had in their education, they feel they
are not doing enough exercising with the PBL method. Even if the
exam’s grades have been stable, students needs reassurance, which
we try to provide by including more exercises in the lecture notes
and access to previous year’s exams.

Finally, the group work is still the worst rated, even though
students stated that they love working in group (85% reported
a good atmosphere). The specific parts targeted are the internal
organization and work repartition (only 55% positive). This shows
the need for the tutor to diagnose dysfunctions in groups and
propose solutions, which is probably the most difficult job of the
tutor. See the conclusion for some ideas on how to improve.

Homework. We ideally would like students to devote one hour
of personal work per hour of class, i.e., about 9h for a 6-session
problem. Figure 3 presents the average number of hours that stu-
dents reported working for each problem. Considering only the
2014–2016 period, the amount of personal work is increasing up to
an average of a little more than 6h per problem, which indicates
the engagement of students in their learning. This is also reflected
by the fact that more than 90% of students agreed that PBL allowed
them to think on their responsibility on their learning.

Sadly, wemade amistake in 2017 when switching to an electronic
survey. While students were previously free to state exactly how
many hours they worked, only limited ranges were given up to a
maximum of 6h. It is highly likely that the results are very biased

Note: 2017 is not comparable with others and Pb 4 spans only 4 sessions.

Figure 3: Reported hours of work per problem
in 2017 (some reported more than 12h the previous years), probably
even more due to anchoring effects.

5 EFFECTS ON STUDENTS AND TEACHERS
Students. By judging from past exams and exams done after the

switch to PBL, I did not experience any significant change in the
average ability of students to answer exam’s questions. It should be
noted that the final exam still has the same format as before, usually
involving two very guided problems in dynamic programming and
approximation algorithms. We do not test aptitudes specific to PBL
such as the ability to work in group, to communicate better, and
to have more autonomous thinking and generic problem-solving
skills, (although the literature shows PBL support these [1]), as
the master degree has specific requirements on purely algorithmic-
related skills. It seems that students still get as much knowledge as
previously, while getting orthogonal skills in communication and
problem solving that will be useful to them in the professional world,
and while enjoying the course a lot. From informal discussions with
the students, this is now the preferred course of the master program.

Although it is sometimes difficult for students to work in groups,
what I mainly observed was a strong cohesion between students
with a desire to stay in the same group, and a lot of mutual as-
sistance, with “better” students re-explaining difficult concepts to
“weaker” students, which for me is a success. Sadly, not all groups
worked perfectly. Here are some quotes from the students’ survey
that reflect the above points:

“Finding a solution on our own, allowing us to be creative is a
very good thing in my opinion.” (question on positive aspects)

“The problem was that students have different levels in the
algorithms depending on their background. So students with
good background can go on with the [problem] while other
students are struggling.”
“It’s very hands on, which allowed the class to be fun. I learned
as much from my own teammates than from the material.”

Teachers. PBL changes also a lot of things from the teacher’s
point of view. While student’s performance and engagement is the
main goal of a course, these are positively or negatively affected by
the teacher’s state of mind. More generally, it is also important for
me to feel at the right place when I’m working. Teaching using PBL
(in this master course as well as in other courses) has brought be
and my co-tutors closer to my students, removing the feeling of not

ITiCSE’18, July 2–4, 2018, Larnaca, Cyprus Florent Bouchez-Tichadou

really knowing my students. It used to take nearly a full semester
to start knowing everyone in a small group of 20-30, now it takes
two to three weeks. This is probably the most satisfying aspect of
PBL to me: being a tutor that interacts with its students instead of
a distant teacher.

Not to say that everything is perfect. As mentioned previously,
I worked with three different co-tutors for the four years of PBL.
The first year, we did a great amount of work with tutor A to set
things up and we both enjoyed a lot the tutoring. However, tutor A
decided to quit the university at the end of the year, feeling there
was too much pressure as a researcher to be able to do its teaching
job right. Although this is not directly related to PBL, it is true that
creating a PBL course from scratch takes an enormous amount of
time, much more than a “classical” course from what I experienced,
and this can feel overwhelming. I sometimes personally felt close
to burnout. So I would advise to prepare the switch to PBL maybe
up to a year in advance.

Tutor B then worked with me for a year. While he also enjoyed
the course, he felt he was not competent enough in algorithms to be
a good tutor. It is certainly an aspect of tutoring that is very stressful
for novice tutors, compared to a classical exercising session. While
it is possible to be well prepared for the latter, PBL needs a very
reactive tutor as free students always come up with a variety of
different approaches for the same problem. Even after four years,
there are always groups who propose a different way of solving
the problems, and it requires a lot of confidence from the tutor
to be able to validate or invalidate the proposed solutions. It is in
particular crucial to discern if learning will take place if students
continue their lead, of if we need to guide them back to the tracks.
I find this extremely interesting, as this aspect of PBL really allows
teachers to better understand the reasoning and misconceptions of
students, but we have a greater responsibility at the same time.

Lastly, tutor C has been my fellow co-tutor for two years now,
and is quite happy about it, although not yet fully convinced by the
method, and would gladly step back “just a bit” towards the “classi-
cal” way of teaching, with more exercises and more formal lectures.
This is a paradox I have often observed in fellow teachers who did
not actively search for an alternative way of teaching: although the
evidence that PBL is great for teaching seems overwhelming (to
me at least), the changes it requires to be a tutor is so great that
teachers are put really out of our “comfort zone” and it requires
much mental effort to not go back.

6 CONCLUSION
Making the jump to Problem-Based Learning allowed me to be
more in contact with students, know them better and guide them
in their learning. Although it seems we can teach less content, it is
not so true for the amount of meaningful content, i.e., content that
students are really likely to remember and make theirs. Students are
more engaged in their learning: they feel more responsible and also
commit more through personal work. By making them solve actual
problems, and letting them be confronted to the difficulty of the
act of solving, students feel more connected to the reality and view
the course as more useful. It is my hope that whatever is gained
that way remains in memory for longer, as it has been shown in
the literature [7], and is reflected by this student’s comment on the
strengths of the course:

“Learning by yourself, so getting experience, which in my opin-
ionmakes you keep the knowledge further than just the exam.”
Moreover, students in this course develop transversal skills in

communication, group work, and mutual assistance. As a result, it
allowed me to satisfactorily teach a class of mixed students hav-
ing with very different backgrounds and levels of knowledge in
algorithms.

As biased as I may be towards PBL, there are still difficulties that
need to be assessed. Firstly, students are often more stressed by the
exams as they feel they are not prepared enough, because they are
solving “only four problems” in one semester. A way to improve this
is to also give “classical” exercises on the side, or make formative
online assessments, for instance using multiple choice questions.
Secondly, working in group is not always easy, and a group that
highly dysfunctions would really hinders the learnings of everyone
in the group. Hopefully I was always able to soothe things out for
now. For instance, it is particularly important with such a setting
that every member does its personal work. This may be the most
difficult facet of the tutoring, hence it is especially important that
teachers receive training before engaging in PBL.

I will finish by a citation of M. Legrand, talking about lectures:
“One problem with classical school is that it gives answers to
questions we didn’t ask and techniques to solve problems we
don’t have. . . ” [4]
This is where resides the power of Problem-Based Learning: it

starts by giving problems, and then students have questions...

A PROBLEM EXAMPLE: HOLD’EM N00BS
This is a 2-player game. There is a series of n cards lying on the table face
up arranged in a line. Players take turns to take cards one at a time, but only
the rightmost or the leftmost card can be picked of the line. When the last
card is taken by a player the game is finished. The highest sum of points of
all cards taken wins the game.

You play first, which card should you take? (Aces are worth 14.)

ACKNOWLEDGMENTS
Thanks to Christophe Durand from the university’s pedagogical service,
for his invaluable help in making the switch to PBL.

REFERENCES
[1] Samuel B. Fee and Amanda M. Holland-Minkley. 2010. Teaching computer science

through problems, not solutions. Computer Science Education 20, 2 (2010), 129–144.
[2] Judy Kay, Michael Barg, Alan Fekete, Tony Greening, Owen Hollands, Jeffrey H.

Kingston, and Kate Crawford. 2000. Problem-Based Learning for Foundation
Computer Science Courses. Computer Science Education 10, 2 (2000), 109–128.

[3] Päivi Kinnunen and Lauri Malmi. 2005. Problems in Problem-Based Learning
– Experiences, Analysis and Lessons Learned on an Introductory Programming
Course. Informatics in Education (2005).

[4] Legrand Marc. 2017. Le débat scientifique en classe. (2017). IXème Colloque
Questions de Pédagogies dans l’Enseignement Supérieur.

[5] Esko Nuutila, Seppo Törmä, and Lauri Malmi. 2005. PBL and Computer Program-
ming The Seven Steps Method with Adaptations. Computer Science Education 15,
2 (2005), 123–142.

[6] H. G. Schmidt. 1983. Problem-based learning: rationale and description. Medical
Education 17, 1 (1983), 11–16.

[7] Shin, Haynes, and Johnston. 1993. Effect of problem-based, self-directed under-
graduate education on life-long learning. CMAJ: Canadian Medical Association
Journal 148, 6 (1993), 969–76.

	Abstract
	1 Introduction
	2 The Set-Up
	2.1 General Framing for a Problem
	2.2 Particular Sessions
	2.3 The Tutor's Role
	2.4 Evaluation
	2.5 Forming the Groups

	3 Content
	3.1 The Algorithmic Thinking at Master's Level
	3.2 The Four Problems

	4 Student's Feedback
	4.1 The Survey
	4.2 Interpretation of Results

	5 Effects on Students and Teachers
	6 Conclusion
	A Problem Example: Hold'em n00bs
	References

